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We introduce a method of generating systematic mean field (MF) approxima- 
tions for the nonequilibrium steady state of ferromagnetic Ising driven diffusive 
systems (DDS), based on the maximum entropy principle due to Jaynes. In the 
phase coexistence region, MF approximations to the master equation do not 
provide a closed system of equations in the MF variables. This can be traced 
to the conservation of the order parameter by the stochastic dynamics. Our 
maximum entropy mean field (MEMF) approximation method is applicable to 
high temperatures as well to the low-temperature phase coexistence region. 
It is based on a derivation of a generalized variational free energy from the 
maximum entropy principle, with the MF evolution equations playing the role 
of constraints. In the phase coexistence region this free energy is nonconvex and 
is interpreted by means of a Maxwell construction. We use a pair-level variant 
of the MEMF approximation to calculate quantities of interest for the ferro- 
magnetic Ising DDS on a square lattice. Results of calculations with several 
different choices of transition rates satisfying local detailed balance are discussed 
and compared with those obtained by other methods. 

KEY WORDS: Kinetic lattice models; nonequilibrium steady state; maximum 
entropy principle; mean field methods. 

1. I N T R O D U C T I O N  

The  s ta t i s t ica l  m e c h a n i c s  o f  c o o p e r a t i v e  s y s t e m s  in t h e r m a l  e q u i l i b r i u m  with  

a hea t  r e se rvo i r  is fa i r ly  wel l  u n d e r s t o o d .  By c o m p a r i s o n ,  m u c h  less is 

k n o w n  a b o u t  such  sys t ems  w h e n  d r i v e n  o u t  o f  e q u i l i b r i u m  by s o m e  externa l  
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force. Historically, simple lattice models were instrumental in gaining our 
current understanding of equilibrium cooperative phenomena. One may 
hope that a similar approach will be helpful for the nonequilibrium case 
as well. The Ising driven diffusive system (DDS), (1'2) which is studied 
here, is one of the simplest lattice models exhibiting nonequilibrium phase 
transitions. It is a kinetic Ising (3-5) (or, equivalently, a lattice-gas) model 
defined on a lattice with periodic boundary conditions. Its time evolution 
is governed by stochastic pair exchange transition rates that are biased in a 
certain direction by a driving field E. For E = 0, the usual equilibrium Ising 
behavior is recovered at long times, but finite fields drive the system into 
a nonequilibrium steady state (NESS). A detailed definition of the Ising 
DDS is given in Section 2, where results of simulations and other studies 
of this model are also described. These results indicate that, while phase 
separation still occurs as the reservoir temperature TR is lowered, the 
underlying statistics at NESS seems to be qualitatively different from the 
equilibrium case. It is the statistics of the Ising DDS at NESS that is 
the subject of this work. Specifically, we propose here a new method of 
generating a hierarchy of successive mean field (MF) approximations to it 
that is based on the maximum entropy principle (MEP). (6-1~ 

The master equation is a system of 2 N -  1 independent linear equa- 
tions for the joint probability distribution of the spin configurations of N 
sites. In Section 3 we show how, under well-defined MF assumptions, a 
hierarchy of approximations is derived from the master equation. This 
leads to a set of evolution equations for the MF variables that conserve the 
local order parameter m and are identical to the equations of Dickman's 
dynamical MF theory/m At a NESS specified by fixed TR and E, they are 
reduced to a system of n - 1 independent nonlinear algebraic equations for 
n independent MF variables corresponding to a given level of approxima- 
tion. Since m obeys a conservation law, its evolution does not contribute 
a nontrivial algebraic equation at NESS. In the disordered phase, m = 0, 
and hence the system of equations is closed and can always be solved 
numerically. In the phase coexistence region, however, m is an unknown 
variable, which depends on TR and E, so that the system of equations is 
incomplete and cannot be solved. 

In Section 4, which is the centerpiece of this work, we overcome this 
difficulty by using the MEP to generate a complete system of MF equa- 
tions for DDS at NESS, for all TR and E. Bowers and McKerrel ~ have 
shown that, for nonequilibrium systems in thermal contact with a heat 
reservoir, the MEP is equivalent to a minimum principle for a generalized 
Helmholtz free energy. We derive here a MF approximation for the 
generalized Helmholtz free energy of the DDS system. For specified TR and 
E, the later is a function of the n independent MF variables on a given level 
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of approximation. These variables play the role of variational parameters 
for the MF approximation to the generalized Helmholtz free energy. At a 
NESS, the MF evolution equations (at the same level of approximation) 
translate into n -  1 nonlinear constraints for these variables. In this way, E 
is taken into account. The generalized Helmholtz free energy is convex in 
the disordered phase, with a unique global minimuim identical with the 
m = 0  steady-state solution of the MF evolution equations. However, it 
becomes nonconvex in the phase coexistence regime and the relevant infor- 
mation for this region is obtained by means of a Maxwell construction. 

To test our MF method, in Section 5 we apply it to the ferromagnetic 
Ising DDS on the square lattice with zero total magnetization. We use a 
pair-level variant of our MF approximation to calculate various physical 
quantities of interest as TR and E are varied. Results are shown to be 
dependent on different choices of transition rates satisfying local detailed 
balance. These results are compared with those obtained by other methods, 
such as Dickman's dynamic MF theory, Kikuchi's cluster variation 
approximation at equilibrium, and Monte Carlo simulations. We conclude 
in Section 6 with a general discussion of the strengths and weaknesses of 
the maximum entropy MF method for DDS that has been introduced in 
this paper. 

2. THE MODEL AND SOME KNOWN RESULTS 

The Ising DDS was originally introduced by Katz e t a / .  (1'2) in a 
stochastic lattice-gas form. A more careful definition of the lattice-gas 
version on the square lattice can be found in Krug et  al. (13) We reproduce 
it below, recast in Ising spin language. Consider a system of Ising spins 
a; occupying the N sites i of a square lattice A with periodic boundary 
conditions. Assume the usual ferromagnetic ( J > 0 )  or antiferromagnetic 
(at< 0) interactions between nearest-neighbor (</j>) spins cr,. and a j ,  given 
by the Ising Hamiltonian 

H =  - J  ~ r (2.1) 
<0> 

where ~e= +1. 
Let this system be in thermal contact with a heat reservoir at tem- 

perature TR. Static properties of the Ising model (2.1) at equilibrium with 
a thermostat are well known. Its time evolution and transport properties 
on the mesoscopic scale can be modeled by different types of stochastic 
dynamics. In this approach the time evolution of the probability p,({o-}) of 
finding a spin configuration {o-} at time t is assumed to be modeled by a 
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stationary Markov chain. It is completely determined by specifying the 
transition rates in the corresponding master equation. The form of the 
latter for the Ising DDS is as follows: 

dpt({a})= ~ [ r  {G}(iJ>)Pt({ff}iiJ>)--q~E(i,J, {0"})Pt({O'})-[ (2.2) 
dt <ij) 

Here {a } <is> denotes a configuration {a } with the spins at nearest-neighbor 
sites (~/) interchanged, ez(i,j, {a}) are the transition rates for pair 
exchange of spins at ( / j )  from configuration {a}, and E is the driving field 
strength biasing pair exchanges along a certain direction. For simplicity, we 
assume that E is along one of the unit lattice vectors ~, i=  1, 2, say 
E = E~I. The transition rates are then defined to be 

ee(i,j, {a}) 

fFIIqk({AH<O> + E(i-j)(a~- a j)~2 }/kB T~)(1 - a~aj)/2, 
= [ v ~  ~(a~<'J>/kB TR)(1 -- ~,~j)/2, 

i - j=  +el 
i--j= +-e2 

(2.3) 

Here s and /'• represent the rates for attempting exchanges of pairs 
parallel or perpendicular to E, respectively. The factor ( 1 -  aiaj)/2 ensures 
that only a pair of opposite spins are exchanged. AH <ij> is defined as the 
energy gain of a configuration following a pair exchange, 

AH <ij> = H ( { a  } ) -- H(  {e } <ij>) (2.4) 

Note that it depends only on the local cluster configuration of (l]> and its 
nearest neighbors 

AH<iJ>=2J(ai ~ ak +a j ~ a,--2aierj) (2.5) 
(ik) <ji) 

The pair exchange dynamics as defined by (2.2)-(2.3) is spin conserving, 
since the global spin operator M = ~  ai remains constant in time. The 
choice of the rate function r is arbitrary, as long as it satisfies the 
detailed balance condition 

~b(2) = e-;'r (2.6) 

Equations (2.1)-{2.5) with different choices of the ratio l"lt/F_L and with a 
particular form of r obeying (2.6) define different variants of the Ising 
DDS. The constraint (2.6) ensures that, for E = 0 and Fll, s > 0, 

lim p, ({a});M)=Z- 'exp(-H/kBTR)6(~ae-M) (2.7) 
t ~ o o  
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where 

The steady-state probability distribution defined by (2.7)-(2.8) corresponds 
to the canonical one for an Ising model (2.1) with fixed M = ~ i  ~i at equi- 
librium with a heat reservoir at temperature TR. Note that it is independent 
of the particular choice of 4(2) and FH/F.L. The discussion in this paper is 
confined to Ising systems .(2.1)-(2.6) with J >  0, M = 0 ,  and from now on 
the term DDS is used restrictively for this case, unless explicitly stated 
otherwise. At E = 0 and Ftt/F • = 1, DDS reduces to the well-known kinetic 
Ising model with spin-conserving Kawasaki pair exchange dynamics. On 
the square lattice, its equilibrium steady state undergoes phase separation 
when TR is lowered below a critical temperature kBTc=2.269J. At 
TR > Tc the system is found in a single homogeneous disordered phase with 
the local order parameter being ( o i ) = 0  for any i on the lattice. At 
T,~ < Tc there are two coexisting ordered phases. Except for a fiat interface 
region oriented along one of the main lattice directions and of charac- 
teristic width comparable to the correlation length, the two phases are 
homogeneous, with (o ' i )=  +rn(TR), where the two signs correspond to i 
being in either of the two phases. Moreover, the values of (o-i) in the 
ordered phases are identical to these of the equilibrium Ising model (2.1) 
without the constraint ~ i  ~ri = 0. 

The role of E in (2.2)-(2.3) is fashioned after a hypothetical constant 
electric field interacting with the Ising as though they were charges. This 
constant electric field cannot arise from a gradient of an electrostatic poten- 
tial, due to the assumed periodic boundary conditions. The latter play an 
important role, since, in their absence, a concentration gradient will build 
up, leading to an equilibrium state, similar to that of gas particles confined 
in a box and placed in a gravitational field. Instead, we seek a non- 
equilibrium steady state with homogeneous phases and nonzero total 
current. 

The J > 0, M = 0 version of the Ising DDS has recently been the sub- 
ject of intensive studies by means of Monte Carlo simulations, analytic 
solutions to the master equation in the limits FH/F a ---, oo and E--* ~ ,  and 
field-theoretic methods. The following picture, which is still incomplete, 
energes from these cumulative efforts. Following an initial relaxation time, 
the E ~ 0  DDS typically attains a nonequilibrium steady state charac- 
terized by stationary current and probability distribution. The latter, 
however, depends not only on TR and E, but also on the particular choice 
of 4(2) and F J F I .  The most common choices of the rate functions ~(2) 
obeying (2.6) and the names by which they are referred to in this paper are 
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Table  I. Transi t ion Rates 

:.>0 
Metropolis rates ~(2) = { ~  p(-2)' 2~<0 

Kawasaki rates ~(2) = 2/I-1 + exp(2)] 
Van Beijeren-Schulman rates ~(2) = exp(- 2/2) 

)~=(AH+_eE)/T,~, ~=0, +1 

listed in Table I. Most of the Monte Carlo work on the Ising DDS has 
been performed on the square lattice using Metropolis rate functions and 
_Fii/.F• Results indicate that phase separation into two 
homogeneous ordered phases persists for all values of E, with local order 
parameters given now by ( a i ) =  +m(TR, E). However, a steady-state 
current 3(TR, E)I[ E is generated when E # 0, the interface becomes oriented 
parallel to E, and local anisotropy develops with respect to directions 
parallel and perpendicular to E, as manifested in distinct pair correlations 
in those directions. The local order parameters _ m(TR, E) vanish on a line 
of critical points To(E), the latter being a monotonically increasl~.~ function 
of E that saturates at Tc(E ~ co) ,.~ 1.4Tc(E = 0). The steady-state current J 
has a discontinuity in its slope at T~(E). Renormalization group calcula- 
tions (16'17) predict a mean field value for the critical exponent /~ from an 
e-expansion to all orders in s = 5 -  d. Initial finite-size scaling of square 
lattice simulations with Metropolis rates c15'18,19) indicated /~ intermediate 
between mean field and the equilibrium Ising one, hinting at a separate 
universality class at large E. However, a subsequent study by Leung (2~ 
pointed to flaws in these works and proposed a new form of finite-size 
scaling appropriate for the DDS at nonvanishing E, which results in 
3 = 1/2. 

Previous attempts to develop mean field approximation methods 
included a mean field approximation to the master equation in the limit 
E o  ~ ,  / '1]/ '•  ~ .  Solutions of the MF master equation in the limit 
E"'~ 00, /"ll//'.l--~ OO yield (2x'13) Tc that varies significantly for the three 
different choices of the rate function ~ in Table I. Monte Carlo simulations 
with explicitly varying FI]s • also show (18) nontrivial dependence of To(E) 
and other system properties on this ratio. A different MF approximation to 
the master equation of the DDS has been derived by Dickman m) based on 
a dynamic cluster variation method. His approach results in a system of 
algebraic equations in the cluster probabilities, which are asumed to be 
translationaly invariant throughout the entire system. However, it is valid 
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only in the disordered phase, since this system of equations is not closed 
(there are more independent variables than equations) in the coexistence 
region of the ferromagnetic DDS. This is due to the conservation of the 
order parameter by the stochastic equations of motion in the ferromagnetic 
DDS. Nevertheless, Dickman proceeded to estimate the field-dependent 
critical temperatures by investigating the limits of stability of the zero- 
magnetization solution under the imposition of small magnetization 
gradients. This approach was subsequently applied (22) to the antiferro- 
magnetic DDS, where the system of equations is closed for any choice to T R 
and E, since the order parameter is not conserved in this case. Recently, 
Garrido eta/. (23) have alsol tried to circumvent the failure of closure of the 
dynamic MF equations for the ferromagnetic DDS by explicit consideration 
of the MF evolution equations at a sharply defined interface. 

For a detailed survey of various studies of the DDS model the reader 
is referred to the recent comprehensive review article by Schmittmann. (24) 

3. M E A N  FIELD E V O L U T I O N  E Q U A T I O N S  

An exact analytical solution of (2.2) is not within reach. A systematic 
approach of generating approximate solutions to (2.2) is provided by 
a generalization of the cluster variation method. This technique was 
originally developed by Kikuchi (25) as a way to generate systematic 
approximations for the free energy of Ising systems at equilibrium. Here we 
use a reformulation of this approximation due to Morita. (26) In this 
method, the joint probability distribution for the whole system is expressed 
through reduced probability distributions for finite clusters, by neglecting 
higher-order correlations. 

Consider the n-point reduced probability distribution functions pl ~) of 
finding configurations {o'}(n)= {o-i~,...,a;,} at time t on a cluster of points 
i~ ..... i n that are a subgraph of a square lattice containing N points. These 
are obtained from the joint probability distribution p, =-pl N) for the entire 
lattice as follows: 

p~n)(a,,..., cri.)= ~ p~")(cr, ..... ~r;=) (3.1) 
{~}IN)_ {a}I") 

The summation is over all configurations in the part of the phase space 
which is complementary to the phase space of the cluster i 1 ,..., in. Following 
Morita, let us recursively define a hierarchy of n-spin functions t/I n) that are 
a measure of the correlation between the n spins: 
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�9 p [ ' ~ ( 0 . ,  o'j) 
~?~(~ ~ p l ~ ~ o , )  (3.2) 

/7 ~n)(G,, ,..., G,o) = p ln ) ( f f , ,  ,..., ~,.) 

x [,I[-I_, P~I'(~ "~2'(~ ~ ' 
]-' 

x H rl~"-1)(aik~, 0.ik2 ..... ai~,_~) (3.3) 
{kl,k2,.. . ,kn-l } 

Here the products are over partitions of the cluster into singlets, pairs, 
triplets, etc., in a way that that avoids overdetermination of subcluster 
probabilities. The possible partitions depend on the topology of the cluster. 
As the simplest example, for the elementary triangle with vertices (1, 2, 3) 
on the triangular lattice, t/13)(0.1, 0.2, 0.3) is given by pl3)(al, o'2, 0.3) divided 
by either 

3 

~2)(0.1' 0"2) ~2)(0"1' 0"3) H P~ 1)(0"I) 
i= I  

or by the other two permutations of this expression, but not by 

3 

n?~(o,, ~ ,17~(",, ~ ,17~(o2, 0.3) 1-I p?~(~',) 
i=1 

The joint probability distribution for the entire system is then 

P~U)( a' ..... 0.i.)= f i  Pl')(aik) H rllZ)(0.,k,, a,k2)'"~l~N)(al, ..... r (3.4) 
k= 1 {kl,k2} 

On a specified level of approximation for the nonequilibrium steady- 
state distribution, let us consider explicitly the correlations in a given basic 
(connected) cluster consisting of n lattice sites and of all its subclusters 
(preserved dusters in Morita's terminology). Henceforth, we will drop the 
subscript t when writing probabilities and correlations at NESS, since they 
are stationary in time. We neglect the correlations in bigger clusters and 
between clusters that do not intersect. This is achieved by setting, for all 
clusters in which the correlations are neglected, 

r/(k)(ai, ,---, aik) = 1 (3.5) 

Thus, e.g., (3.5) holds for all k > n. The reduced probability distributions 
for bigger clusters and clusters that do not intersect are found from 
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(3.1)-(3.5) in terms of p(~), p(2),..., p(,). For simplicity, we also make the 
assumption of system homogeneity at the steady state. Thus we have 

P(k)((Til  ..... ~ik) = P(k)(al ..... a~) (3.6) 

for all clusters of the same size and shape. This assumption is violated at 
the interface between the two coexisting phases at low temperatures, whose 
contribution to the free energy is negligible in the infinite-system limit, 
relative to the bulk contribution. 

From the master equation (2.2) one can derive a hierarchy of equa- 
tions for the macroscopic variables (average values of spins and products 
of spins), which are usually referred to as rate equations. A systematic 
method for deriving these equations was developed by van Kampen (27) in 
the form of a power series expansion in a parameter related to the size of 
the system. On the pair level of approximation van Baal (28) has suggested 
such a coarse-graining procedure for both the Kawasaki and Glauber 
kinetic Ising models. The resulting equations are the same as those 
obtained in ref. 29 based on heuristic arguments. A similar systematic 
coarse graining of the master equation at the pair level of approximation 
for DDS at NESS is the subject of another paper. (3~ Here the second, 
more heuristic approach is adopted. In this approach the equations are 
derived by considering explicitly all the configurations {a}r on a certain 
small cluster, their respective probabilities of occurring p({a}ct), and the 
transition rates O(AH) for performing exchange from or to this configura- 
tion. The general form of a such an equation is 

dP (k) _ _ G(~)(p(1), p(2),..., p(n)) (3.7) 
dt 

= Y' A p ( k ) ( b ( A H ) p ( { a } c , ) ,  k = l ,  2,...,n (3.8) 

where Ap  (k) is the corresponding change in p(k) when exchange is per- 
formed, and p({o}~) is expressed through p(1), p(2),..., p(,). The left-hand 
side of Eq. (3.7) is identicaly zero at NESS. 

At the pair level of approximation the system is described in terms of 
the single-site and nearest-neighbor pair probability distributions p(~)(oi) 
and p(2)(ai, o]), respectively, i.e., one assumes 

q(k)(ai l , . . . ,ae , )=l  for k > 2  (3.9) 

and also 

rT(2)(a,., a j )=  1 for [i-- j[  > 1 (3.10) 
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In equilibrium, the homogeneity assumption is expressed by 

p(1)(o'i) = p(1)(o') for all i~ A (3.11) 

p(:)(ai, a j )=p(2)(a , ,a: )  forall i ~ A  and j = i + ~ l , 2  (3.12) 

However, the presence of an electric field along el will certainly induce 
some anisotropy. To account for this, we have to allow different probability 
distributions for bonds along the field and perpendicular to it, i.e., 

p(2)(0"i, 0"i+~i) =p]2)(0"1, 0"1+~1), i e A  

p(2)(o'i, o-i+o: ) = p(22)(o'1, 0"t +~2), i e A  

(3.13) 

(3.14) 

as shown in Fig. 1. 
Thus, on the pair level of approximation at NESS, the system is 

described in terms of the eight variables 

p(1)(+ 1) = x ,  p(1)(-- 1) = y  (3.15) 

p~2)( + 1, + 1 ) = zi "} 
p12)(+ 1 , -  1)=p~2)(-1,-~-l)-. .~b i}, 
p12)(-- 1, - 1) = wi 

i= 1, 2 (3.16) 

These include the probability of a single site to have spin up, x, or down, 
y; the probability for two nearest-neighbor sites to have both spins up, zl; 
to have both spins down, wi; or to have different spins, bi; where i =  1, 2 
refers to nearest-neighbor pairs of sites along the field and perpendicular to 
it. Among these eight variables only three are independent, since they have 
to satisfy the normalization conditions 

x + y = l ,  z i + 2 b i + w i = l ,  i = 1 , 2  (3.17) 

Fig. 1. 

o #2)o I 
E 

In the presence of a driving field E the pair probabilities along the field, p~2), and 
perpendicular to it, p(2), are no longer equal. 
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and the consistency relations 

Zi-~- bi"t- X~ 
wi=bi+yJ '  i = 1 , 2  (3.18) 

For example, one can choose as independent variables x, bl, and b2 and 
express the rest in terms of these. Instead of working with x, one can 
introduce the average magnetization per site m = x - y ,  which is the natural 
order parameter for the system. Since the system we are considering is 
diffusive, the local order parameter m is conserved under pair exchanges, 
and therefore its time evolution does not contribute a nontrivial algebraic 
equation at NESS. Nontrivial equations of motion can be derived only for 
the pair probabilities b I and b2. In a similar way at every level of the 
MF approximation, one has n -  1 nontrivial algebraic equations at NESS 
for n independent MF variables, due to normalization conditions, con- 
sistency relations, and conservation of the local magnetization. In the high- 
temperature regime the spontaneous magnetization is zero (completely 
disordered phase). The system of equations is then closed and can be 
solved numerically. However, at low enough temperatures, m ~ 0 and the 
system of equations is incomplete. By using only the homogeneous rate 
equations, it is not possible to obtain information concerning the transition 
temperature To(E) or the low-temperature properties of the system. 

We proceed further with deriving the rate equations at the pair level 
of approximation. Since our model system evolves only through exchanges 
of spins between nearest-neighbor sites, the change in energy associated 
with such exchange [see (2.5)] depends only on the surroundings of the 
given pair. Therefore, for deriving the rate equations for b, and bz we need 
to consider only clusters consisting of a bond and all its nearest neighbors. 
Since every spin can attempt exchange in both directions, we have to 
consider contributions G~ ') and G~ 2) from the two dusters depicted in 
Fig. 2. The same configurations appearing on both clusters will have 
different probabilities due to the anisotropy induced by the electric field, 

db--2= [G~')(m, b,, b2; TR, E)+ G~2)(m, b, b2; T R, E)], 
dt 

i=  1, 2 (3.19) 

Glk)(m, b,, bz; TR, E) = ~ Abiqk(A'I-I= + e(~k)E)p(k), k = 1, 2 (3.20) 
a 

The summation is over all configurations appearing on the clusters and 
P~) is the probability of a configuration ~ to occur on the cluster k from 
Fig. 2, and e(~ k) takes values + 1 , -  1, or 0, depending on whether the 
exchange is along the field, against it, or perpendicular to it, respectively. 
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otto 0 ' 0  

0 ~ ' 0  

Fig. 2. On the pair level of approximation these are the smallest possible clusters that one 
has to consider in order to derive the rate equations for the fractions of (+ - )  pairs along 
the field, bl, and perpendicular to it, b2. 

T o  illustrate the derivation,  let us consider  a par t icular  configurat ion 
appea r ing  on the first cluster (Fig. 3) and calculate explicitly its contr ibu-  
t ion to the equat ions  of  mot ion  (3.19). The  probabi l i ty  of  its occurr ing is 
given by  

pO) glblWlZ22b2 (3.21) 
-- x3y3 

and  AH=4J,  A b l = 2 ,  A b 2 = 0 ,  A m = 0 ;  thus its contr ibut ions  to G~ 1) and 
G(I~ are 

Zlbl WlZ2b 2 and 0 (3.22) 
2~b(4J-  E) x3y 3 

--- r O 

Fig. 3. An example of a particular configuration, illustrating the derivation of the rate 
equations. The black circles represent (+)  spins and the empty circles ( - )  spins. 
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respectively. The contributions of the equivalent configuration of spins in 
the rotated cluster can be obtained from these by a simple interchange of 
the indices. The full expressions for G~ 1) and GI 2~ are very long and 
cumbersome and are given in the Appendix. 

4. A M A X I M U M  E N T R O P Y  A P P R O A C H  

We conclude from ttae discussion above that the MF evolution 
equations (3.7)-(3.8) do not contain enough information to determine the 
probability distribution for the DDS in the phase-coexisting NESS regime. 
Here we attempt to overcome this problem by adopting a generalization of 
the Gibbsian approach due to Jaynes. (6-8) According to him, statistical 
mechanics (of nonequilibrium, as well as equilibrium systems) can be 
reduced to the general problem of Bayesian statistical inference. This 
approach leads to the determination of a probability distribution which 
corresponds to an optimal description of the system that is consistent with 
prior information about the physical laws governing the system. For 
example, this could be the knowledge of the equations of motion, conserva- 
tion laws, moments of the probability distribution, etc. This prior knowl- 
edge is also reflected in the choice of the set of all accessible configurations 
on which the probability distribution is defined. In the absence of any 
further prior information about the system, it is assumed that the choice 
of the probability distribution should be as unbiased as possible. Mathema- 
tically, it is expressed through the maximum entropy principle (MEP): the 
optimal probability distribution p({a}) should maximize the information 
entropy functional, which is a measure of the missing information about 
the system. Any prior knowledge about the system can be accounted for 
by appropriate constraints on this variational principle. In particular, the 

�9 normalization condition for the probability distribution is always imposed 
as such a constraint. 

For our system, the entropy functional is defined as 

S[p({a})]  = --kB Z p({a})log p({a}) (4.1) 

and the normalization constraint is 

Z p ({a} )=  1 (4.2) 

If a system achieves thermal equilibrium with a heat reservoir at a 
temperature TR, the latter imposes an additional constraint of a fixed mean 
internal energy 

H({a}) p ({a})=  U (4.3) 
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The application of the MEP in this case leads to the usual canonical 
ensemble. It is well known that such an ensemble can be equivalently 
derived by minimizing the Helmholtz free energy 

FEp({~})] = Z H({G})p({a})-- TRS[p({G})] 
{~} 

(4.4) 

which is a Legendre transform of the entropy functional. Note that for a 
system at thermal equilibrium with a heat reservoir at a temperature TR, 
the thermodynamic temperature T of the system is by definition identical 
to T R, where 

T =  3U (4.5) 
OS 

Similarly, other ensembles of equilibrium statistical mechanics are recovered 
by imposing constraints on the maximization of the entropy arising from 
contacts with different types of reservoirs. In these cases as well, maximiza- 
tion of the entropy can be equivalently replaced by minimization of the 
corresponding thermodynamic potentials that are the appropriate Legendre 
transforms of the entropy. Thus, the MEP provides a unified approach to 
equilibrium statistical mechanics (see, e.g., refs. 9 and 10). Note that, as 
long as it is known that the system achieves thermodynamic equilibrium 
with the reservoirs, the determination of the corresponding probability 
distributions is independent of the particular way the contact with the 
appropriate reservoirs is realized. The reservoirs merely constrain the mean 
values of certain fluctuating system variables. 

For E = 0, the system under consideration here can be considered at 
a thermal equilibrium with a heat reservoir at a temperature TR that enters 
explicitly in the transition rates used in the Monte Carlo simulations. The 
choice of a particular form of the transition rates amounts to specifying an 
explicit energy exchange channel with the thermal reservoir. In addition, 
the choice of the transition rates uniquely specifies the stochastic evolution 
equation for the probability distribuition, and hence the stochastic equa- 
tions of motion for its various moments. However, the theory of Markov 
chains shows that the equilibrium probability distribution is independent of 
the choice of the transition rates as long as they satisfy the condition of 
global detailed balance. Hence, at equilibrium, the various evolution 
equations resulting from different choices of the transition rates coincide, 
and lead to the same probability distribution as determined by the MEP. 

For E =  0, the transition rates for the stochastic channel of energy 
exchange between the spin system and the heat reservoir at temperature TR 
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are isotropic. In this case, the condition of global detailed balance is 
satisfied, and the system reaches equilibrium with the heat reservoir. The 
only effect of E in DDS is an additive contribution to energies entering 
in the stochastic rates that originates from work done by the electric field 
when a pair of spins are exchanged. We interpret it as a "field drive" 
(considered to be a part of the heat reservoir), which activates another, 
anisotropic, stochastic channel for energy exchange with the reservoir. As 
the condition of global detailed balance, is violated for E ~  0, the system 
cannot achieve equilibrium with the reservoir. Monte Carlo simulations 
show that in this case the system reaches a nonequilibrium steady state that 
is characterized by an inherent anisotropy and a stationary current. The 
energy of the spin system fluctuates in time due to energy exchanges with 
the heat reservoir, but its mean is stationary. The total energy of the 
combined system (spins and reservoir, including the stochastic field drive) 
is kept constant at any time. However, because of the anisotropy of the 
transition rates and the periodic boundary conditions, a stationary mean 
current is induced. We interpret the constant mean energy to arise from a 
steady rate of gain from the stochastic field drive, balanced by the same 
steady rate of loss to the rest of the reservoir. Since the condition of global 
detailed balance is not satisfied at NESS, the different choices of the 
transition rates lead to different stochastic equations of motion for the 
l~robability density and its moments at the steady state. Thus, at NESS, we 
expect the equations of motion to contain nonredundant prior information, 
which has to be incorporated as additional constraints for the variational 
determination of the steady-state probability distribution from MEP. 

Other systems at NESS in thermal contact with a heat reservoir at 
temperature TR have been previously studied using MEP by several 
authors. ~3~-33) It has been shown that, similarly to the equilibrium case, 
maximization of the entropy subject to the constraints of constant mean 
energy is again equivalent to minimization of a generalized Helmholtz free 
nergy having the same form as (4.4). It must be stressed, however, that the 
thermodynamic temperature (4.5) of the NESS system is in general not 
equal to TR, and a steady heat flow may exist between the system and the 
heat reservoir. The minimization of the generalized Helmholtz free energy 
should be subject to additional constraints on the probability distribution 
expressing any other nonredundant prior information about the system. 
The DDS stochastic evolution equations for the probability distribution 
provide such constraints at NESS (those constraints become redundant at 
equilibrium). 

The rest of this section is devoted to the application of MEP to DDS 
on the same level of MF approximation as we used for the derivation of 
the stochastic equations of motion in Section 3. 
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Consider the exact and most general expression for the generalized 
Helmholtz free energy, which is given by the minimum value of 

~'= Y~.--Y~ p~N~(o,,..., ~N) • H(o,,..., oN) 
a l  aN 

+kBTR~.. .~ 'p(N)(al , . . . ,au)•  (4.6) 
O'l aN 

considered as a functional of the joint probability distribution p =  
p(Nl(aa ..... aN) for the entire lattice, subject to the normalization condition 
constraint 

Z ' "  "~ P(U)(al,'",au)= 1 (4.7) 
a l  aN 

Following Morita, we define the two following types of functionals of the 
reduced probability distributions. These are the functions S (") defined via 
In S which serve naturally as the entropy for the cluster it,..., i,, 

In S{")(il ..... i,) = - ~ . . .  ~ p(")(a,1 ..... %) In p(")(a h ..... ai,) (4.8) 
r I ai n 

In a way analogous to the way in which the correlation functions were 
defined, we now define the correlation functionals F("): 

F(2)(i, j) = 

F("~(il ..... i , ) -  

S~:)(i, j) 
S~ S~ 

S(")(il,...,i,) 

(4.9) 

f i  S(")(i,) 1--[ F(2)(ih, it=) "'" I-[ 
l =  ! {/I ,  12} { l l , ' . ' , l n - l }  

F ("- a)(ih,..., it._,)] 

(4.10) 

In terms of p("), S ("), and F (") the following expression is found for the free 
energy, which is still exact: 

~ =  ~ p(2)(ai, a s) H(ai, aj) 
(iS> 

- kB TR In S(")(i) 
i 1 

+ l n  F(m(1 ..... N ) ]  

+ ~ F(2)(i,j)+ ~ F(3)(i,j,k)+ ... 
{ i , j }  { i , j , k }  

(4.11) 
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Here we have used the fact that only nearest-neighbor interactions are 
included in the Hamiltonian (2.1). The minimum value of this expression 
cannot be found unless some approximations are made. As is shown by 
Morita, the various levels of approximation to the free energy in the 
framework of the CVM correspond to different choices of families of 
indecomposable small clusters. This is implemented by requiring (3.5) and 
also 

F~k)(il ,..., i~) = 1 (4.12) 

for all k point clusters that do not belong to some family of indecom- 
posable clusters. Thus, on the pair level of approximation, in addition to 
(3.9)-(3.10) one also has 

F~k)(il,...,i~)= 1 for k > 2  (4.13) 

FC2)(i, j)  = 1 for l i - j [  > 1 (4.14) 

Substituting (3.9)-(3.10) and (4.13)-(4.14) in (4.11) yields the following 
approximate expression for the free energy: 

N 

~ =  _ j  ~ [p~2)(i, i+~1)+p~2)(i, i+e2)]  
i = 1  

--kBTR 3 ~ lnS~l~(i)+ ~ [lnS(2)(i, i+~l)+lnS(Z)(i, i+~2)] 
i = l  i ~ 1  

(4.15) 

At this point, constrained minimization of (4.15) is still quite intractable. 
The homogeneity assumption (3.11 )-(3.12), combined with the approxima- 
tions made above, simplifies enormously the minimization procedure and 
makes the problem solvable. Using the notation introduced in Section 3, 
we obtain the following very simple expression for the free energy of an 
Ising ferromagnet in the presence of an electric field along one of the 
principal axes (el) at the pair level of approximation: 

~ = N O  
where 

~' = J[(4bl  -- 1) + (4b2- 1)] 

- kB TR I3(x In 2 ] 
x + y  In y) - ~ (z; In z; + 2b; In b i + w i In wi) 

i = l  

=- u-- TRS (4.16) 

822/70/3-4-16 
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We end this section with a short summary. Application of the MEP at 
the pair level of the homogeneous MF approximation reduces to the 
following mathematical problem. We have to minimize the expression 
(4.16) for the free energy with respect to the three independent MF 
variables bl, b2, and m describing the system, with the equations of motion 
for bl and b2, (3.19), at NESS serving as constraints. 

5. APPLICATION OF THE METHOD ON THE PAIR LEVEL OF 
A P P R O X I M A T I O N  

The minimization procedure outlined in the previous section was 
carried out numerically. One can find the constrained minimum in several 
ways. We have chosen to take the constraints explicitly. Thus, at fixed 
values of the parameters TR and E, we solve the rate equations (3.19), with 
zero on the left-hand sides, numerically for bl and b2 for every given value 
of the magnetization per site m. Upon substitution in the expression for the 
generalized free energy (4.16) one gets the latter only as a function of m, 
i.e., 

= el(m, bl(m; TR, E), b2(m; TR, E); TR, E) (5.1) 

This way, one has to minimize ~ with respect to only one variational 
parameter m. The results for the various physical quantities of interest are 
presented in this section, with all the energies given in units of J and the 
temperatures in units of kB/J. 

We first explored the dependence of the generalized free energy on the 
magnetization per site m. Thus, ~(m) was calculated and plotted con- 
sidering TR, the temperature of the reservoir, and E, the magnitude of 
the driving field, as parameters. These calculations indicate that a field- 
dependent critical temperature To(E) can be defined. At reservoir 
temperatures TR>~ To(E), ~(m) is a convex function and has a single 
minimum at m = 0. This is usually interpreted as the existence of a single 
disordered phase in this regime. For TR< Tc(E), el(m) has the familiar 
double-hump shape with two degenerate minima at ml,2 = _+rh and a 
maximum at mo = 0. Using a Maxwell construction, this can be interpreted 
as the occurrence of spontaneous symmetry breaking and the coexistence of 
two ordered phases at lower temperatures, similarly to the equilibrium 
case. Thus m emerges as a natural order parameter of the phase transition. 
Figure4 displays ~(rn) for E--* ~ at three different temperatures. This 
behavior is typical for all values of the driving field strength. 

The pair-level MEMF calculations indicate the existence of a second- 
order phase transition for all values of 0 ~< E < ~ ,  in agreement with the 
Monte Carlo simulations. Figure 5 exhibits the dependence of m on TR at 



Mean Field Method for Driven Diffusive Systems 755 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

I 
I 

! 

ii/I/' / 
I " / / I  

f 0.20 0.40 0.60 0.80 ] 1.00 

" "  . . . .  / 
' ,.,.... j "  

m 

Fig. 4. The dependence of the free energy per site ~ on the order parameter m, for E ~ 
at three different temperatures: TR > Tc(E ~ co) (the dashed line); TR = Tc(E ~ ~ ) (the solid 
line); TR < Tc(E ~ ~) (the dash-dotte d line)�9 
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Fig. 5. The spontaneous magnetization m as a function of  the temperature of the reservoir 
T~ at E = 0  (the dash-dotted line), E =  10 (the solid line), and E ~  oo (the dashed line). 
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Fig. 6. The dependence of the order parameter on the strength of the electric field at T R = 3 
IT,(0)  < TR < Tc(oo)] (the dashed line) and TR = 2 [T8 < To(0)] (the solid line). 

equilibrium (E = 0), at E = 10, and in the infinite-field limit, indicating that 
the electric field induces a higher level of order. Figure 6 shows the varia- 
tion of m with E at two fixed values of T R below and above To(0). Due to 
the nature of the Metropolis rate functions there are discontinuities in the 
slope of the curve at E = 4, 8, 12, as demonstrated in the inset of Fig. 7. 
This is an artifact of this particular choice of the transition rates and 
should not be attributed any physical significance. 

The Tc-E phase diagram is presented in Fig. 8. The critical tem- 
perature increases monotonically with E, practically saturating for E > 15 
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Fig. 7. The plot of the order parameter m versus the strength of the electric field E at T~ = 2 
on a larger scale so that details can be seen. The inset is a further enlargement showing the 
discontinuity in the slope of rn(E) at E = 4 .  Similar discontinuities exist at E =  8 and 12 due 
to the singularities in the Metropolis rates. 
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Fig. 8. 
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The phase diagram for the ferromagnetic DDS in the T,~-E plane, calculated with 
Metropolis ~-ates. 

(at such high fields jumps against the field are almost totally suppressed). 
Our calculation for the equilibrium case yields Tc(0)= 2.885, which is the 
well-known result of Bethe's mean field approximation. In the limit of an 
infinitely strong field, the critical temperature reaches the saturation value 
of Tc(E~ oe)~3.3228 (for Metropolis rates). Thus, an infinitely strong 
field produces an increase of ,,~15% over the equilibrium critical tem- 
perature. On the same level of approximation the dynamic mean field 
theory of Dickman(11) estimates To(E---, o~ ) ~ 3.206 (i 1% increase). All 
of these approximations are consistent with Monte Carlo data. Early 
results show Tc(E--+ oo)=3.125 (1'2~ and 3.075. (15'18'a9) The most recent 
estimate, (2~ using anisotropic finite-size scaling, is 3.20, which is a 41% 
increase over the exact To(0)= 2.269. 
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Fig. 9. The difference between the fraction of (+  - )  nearest-neighbor pairs in the direction 
perpendicular to the field b2, and along the field, b~, versus the temperature T R at E =  10 
(the solid line) and E ~  oo (the dashed line). 
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Fig. 11. The temperature dependence of the nearest-neighbor pair probabilities along the 
field (a) for having ( §  4-) spins, z~, and (b) for having ( - - )  spins, w~. The solid line 
presents the results at E = 0 and the dashed at E ~ oo. 
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Figures 9-13 display how the nearest-neighbor pair probabilities bi, Zi, 
and wl, i = 1, 2, are affected by the presence of a driving field. As expected, 
the field induces certain anisotropy and the probabilities in directions 
parallel and transverse to the field are no longer equal, though their values 
are still quite close. The difference between fractions of up-down spin pairs, 
b2 -  bl, versus the temperature TR is plotted in Fig. 9. The maximum is 
attained at Tc(E). As T R y 0  both b I and b 2 approach zero (see also 
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Fig. 13. The nearest-neighbor pair probabilities of having (+  - )  spins along the field, bl 
(the solid line), and perpendicular to it, b2 (the dashed line), versus the electric field E at 
T R = 3 [ r~(0) < T,~ < r~(oo )]. 



760 Pesheva e t  al .  

Fig. 10), which corresponds to a completely ordered state. The correspond- 
ing behavior of the nearest-neighbor fractions along the field of up-up (zl) 
and down-down spins (wl) is presented in Fig. 11. In the limit of TR ~ o% 
at finite fields, bl and b2 are expected to approach 1/4 (correspondingly, 
b 2 - b l - - ,  0). The number of broken bonds (in both directions) in the 
ordered phase raises rapidly with TR until the transition temperature is 
reached. In the disordered phase the growth rate toward the saturation 
value is much slower. This qualitative behavior is the same for E = 0 and 
E:~0. For TR< To(0) the electric field is responsible for a higher level of 
ordering in the system since bi(E)< b(0). In the high-temperature regime, 
however, the field stimulates a higher level of disorder, the effect being 
more pronounced in transverse direction, as could also be seen from 
Fig. 12, where the nearest-neighbor pair correlations ~i and ~2 are defined 
by ~k= (0"(i) o ' ( iq-~l) ) ,  k =  1,2. The behavior of bl and b 2 depicted in 
Fig. 13 can be easily understood if compared with Figs. 6 and 8. At TR = 3 
the system is initially in the disordered phase. The application of the 
electric field at first increases the level of disorder until a maximum is 
achieved at E g 5. Then the tendency of the ordering starts prevailing and 
for E>_-6.5 the system is in the ordered phase with bl and b2 decreasing 
rapidly toward the saturation values, whic~ are lower than the equilibrium 
value at that temperature. The entropy per site (Fig. 14) has the same 
qualitative behavior as bl and b2 (see also Fig. 22a). 

Another quantity of interest, which is readily computed in our theory, 
is the average current in the direction of the field d = j ~ .  The current for 
the bond (i, i+  ~ )  is defined by 

a(i; {a})=qke(i, i+e l ,  {(7})(Gi--tTi+#l)/2 (5.2) 

Fig. 14. 
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The entropy per site s versus the temperature of the reservoir Tn at E =  0 (the 
dashed-dotted line) and E ~  oo (the dashed line). 
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i.e., this is the expected jump rate from i to i - k e  I in a configuration {a} 
(by the homogeneity assumption it is the same for all i). By averaging over 
all possible configurations appearing on a cluster consisting of a bond and 
all its nearest neighbors (cluster 1, introduced in Section 3), one gets the 
average current at a pair level of approximation. It could be written in the 
form 

j = n +  - n  (5.3) 

with 

n+ = ~ (J(AH=Yr E)P(~ ') (5.4) 
o~ 

n+ and n_ are the average number of jumps performed along and opposite 
to the field, respectively. The full expression for the current j is given in the 
Appendix. At TR=2 [TR<Tc(0)],  j first increases linearly with E and 
saturates rapidly after E =  5 (Fig. 15). At this temperature the system is 
always in the ordered phase and the current is strongly suppressed. At 
higher temperatures [Tc(0) < TR < T J E ~  oo)], j increases considerably 
for E s  [0, 6.5], since for these values of E the system is in the disordered 
phase. At high temperatures and strong field j ~ b l  (see Fig. 16). The 
temperature dependence of the current has a break in its slope at To(E), 
consistent with the results from MC simulations. (1'2"18) 
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Fig. 15. The average electric current j in the steady state as a function of the electric field 
E at two different temperatures, TR<Tc(0 ) (the solid line) and Tc(O)<TR<Tc(oo) 
(the dashed line). 
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Fig. 16. The temperature dependence of the average electric current j in the direction of the 
field at two values of the driving field strength, E =  10 (the solid line) and E ~ ~ (the dashed 
line). 

Since the system is not in equilibrium with the heat reservoir, it might 
be expected that it is characterized by some effective temperature different 
from that of the reservoir. If, in analogy with the equilibrium case, one 
defines a quantity 

~=a. (5.5) 
as 

one can try to interpret it as the temperature of the system. In equilibrium 
this relation follows from the identification of the statistical entropy with 
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Fig. 17. The temperature dependence of the derivative of the internal energy (~P= Ou/Ss) with 
respect to the entropy at fixed difference b2-b~ in the steady state of the system at E =  0 
(the dash-dotted line), E =  10 (the solid line), and E--,  oo (the dashed line). 
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the thermodynamic entropy�9 For a system in the nonequilibrium state, 
however, there is no evidence so far that the same identification can be 
made. As can be seen from Fig. 17, T(E)> TR at E > 0  (at E=O, 7"= T,~, 
of course)�9 This result is consistent with the fact that there is a constant 
flow of heat from the system to the reservoir. Aside from this, there is no 
other evidence that T could indeed be viewed as the temperature of the 
system. The dependence of ]" on E is shown in Fig. 18 and has the typical 
behavior displayed by the other physical quantities, i.e., it saturates as 
E ~ o e .  

We studied also the efect of using different rates in the rate equations 
on the properties of DDS at NESS. As mentioned above, the choice of the 
rates is of no importance in equilibrium, but at NESS it is expected that 
the choice of transition rates might affect the properties of the system. 
The dependences of various quantities of interest as a function of the 
temperature TR at fixed E and as a function of E at fixed TR calculated 
with different rates are displayed in Figs. 18-22. The basic observations are: 
(i) for Kawasaki rates the results we get are very close to those obtained 
with the Metropolis rates. This is expected, since the Kawasaki rates are 
essentially smoothed versions of the Metropolis rates. For example, 
To(E--* oo) computed with the Kawasaki rates is ,~ 3.326, which is a negli- 
gible change over the result (3.3228) computed with the Metropolis rates; 
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Fig. 18. The derivative of the internal energy u with respect to the entropy s, T (for fixed 
difference b2-bl), in the steady state as a function of the driving field strength E at 
To(0 ) < T R < T~(~ ) for Metropolis rates (the solid line) and Kawasaki rates (the dash-dotted 
line). 
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Fig. 19. The spontaneous magnetization m at TR= 3 [Tc(0)< Tn < T~(co)] as a function of 
the strength of the driving field E computed with the Metropolis rates (the solid line) and the 
Kawasaki rates (the dash-doted line). In the case of van Beijeren-Schulman rates m is the 
same as in the equilibrium case at this temperature (i.e., it is zero). 

(ii) on the other hand, the use of the van Beijeren-Schulman rates leads to 
a dramatic change. Except for the current, all other nonequilibrium steady- 
state quantities are the same as in equilibrium. This result can be traced 
back to the specific form of the van Beijeren-Schulman rates and the way 
the driving field enters into the dynamical equations for bt and b2. In other 
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Fig. 20. The dependence of the average electric current per site j on the strength of the 
electric field E at To(0)< TR<Tc(oo) in the case of Metropolis rates (the solid line), 
Kawasaki rates (the dash-dotted line), and van Beijeren-Schulman rates (the dashed line). 
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words, at the pair level of approximation, E enters through the same over- 
all factor in both rate equations. Such a factor can be absorbed into a 
change of the time scale. It is not clear if this is an artifact of the pair level 
of approximation, or whether it persists at higher MF levels of approxima- 
tion as well. 

6. C O N C L U S I O N S  

A rich variety of analytical methods exists for studying phase trans- 
itions in equilibrium systems, ranging from simple mean field approxima- 
tions to renormalization group techniques. By contrast, the arsenal of 
available approximate methods is much scarcer for systems at NESS. This 
is partly due to the weaker foundations of nonequilibrium statistical 
mechanics as compared to the well-established Gibbsian ensemble 
approach for equilibrium systems. The latter serves as a natural basis for 
many approximations. Thus, it is not surprising that the initial studies of 
DDS and other systems at NESS centered around Monte Carlo simula- 
tions. These simulations provided a wealth of interesting and valuable 
information on nonequilibrium phase transitions. However, there is a need 
for a parallel development of approximate analytical methods applicable to 
such systems, not only as computational alternatives, but as a means for 
guiding the simulations, deriving basic principles, and organizing our 
knowledge. Thus, in the case of DDS, there has been an ongoing effort to 
extend approximation approaches, such as field-theoretic renormalization 
group and lattice-gas mean field methods, from equilibrium to NESS. In 
this paper we have investigated the DDS model, which is a particularly 
simple system at NESS exhibiting a phase transition, by using the maxi- 
mum entropy principle. The Kolmogorov-Shannon entropy functional for 
the NESS probability distribution over the possible configurations of the 
Ising variables is constructed in the usual way. The DDS is assumed to be 
in thermal contact with a heat reservoir at a constant temperature TR. As 
has been previously shown, maximization of the entropy in this case is 
equivalent to minimization of a generalized Helmholtz free energy. In 
Section 4 we argued the applicability of this result for the DDS. For 
nonvanishing applied electric field, the DDS is driven into NESS by its 
stochastic equations of motion. Thus we have used the latter as additional 
constraints to be imposed on the minimization of the generalized Helmholtz 
free energy. 

Based on the assumptions above, we have developed a systematic 
mean field approximation method which is an extension of the Kikuchi 
cluster variation method for lattice models at equilibrium. Here, the 
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method has been demonstrated for the DDS on the square lattice using 
the homogeneous pair level of approximation. This approximation was 
applied to both the stochastic equations of motion and to the generalized 
Helmholtz free energy. It has been shown that the homogeneous MF 
approximation to the evolution equations does not provide a closed self- 
consistent system of equations for the variational parameters, except for the 
disordered phase. However, using these equations as additional constraints 
for the generalized Helmholtz free energy and with the help of a Maxwell 
construction, we were able to derive a MF phase diagram that is a good 
approximation to the phase diagram derived from Monte Carlo simula- 
tions. Moreover, we were able to study and predict properties of the DDS 
that cannot be easily addressed by Monte Carlo simulation methods, such 
as the behavior of the entropy-related properties. Our study recovers all the 
basic bulk properties of the system as reported from Monte Carlo simula- 
tions to the extent that can be expected from a mean field treatment. On 
the other hand, our attempts to base a similar kind of MF approximation 
on other variational principles did not lead to MF phase diagrams even 
remotely comparable to the one observed in simulations. 

Among the variational principles sometimes advocated for non- 
equilibrium systems, we have explicitly checked the minimum entropy 
production principle and the possibility of using the constraint of constant 
electric current in conjunction with the MEP. This has been done on the 
same homogeneous pair level of the MF approximation as we have done 
above using the MF evolution equations as the constraints. Within this 
level of the MF approximation, explicit expressions for the current and the 
entropy production can be easily derived. However, we find that using 
either the minimum entropy production principle or imposing the 
constraint of constant electric current in conjunction with the MEP does 
not reproduce the Monte Carlo results even qualitatively (there is no phase 
separation at all at any value of the electric field). 

Quite generally, for systems whose time evolution can be modeled by 
a Markov chain, the probability distribution is given by the solution of the 
linear master equation. If the system is in a thermal equilibrium with a heat 
reservoir, it satisfies global detailed balance. In that case, the long-time 
limit of the solution to the master equation minimizes the Helmholtz free 
energy, and it is independent of the particular form of the channel for the 
thermal contact. Thus, at equilibrium, the evolution equations contain 
redundant information with respect to that obtained from minimization of 
the Helmholtz free energy. However, at NESS, the global detailed balance 
is not satisfied. In principle, one can resort to solving the exact linear 
master equation for the evolution probability distribution. For most physi- 
cal systems such an exact solution is impossible to find: However, 
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approaching NESS in the spirit of MEP, one should view the evolution 
equations as additional constraints to be imposed on the minimization of 
the generalized Helmholtz free energy. These evolution equations depend 
now on the specific form of the thermal channel between the system and 
the heat reservoir. Mean field approximations similar to those used for 
equilibrium systems can then be employed to find approximate solutions to 
the constrained minimization problem. This work demonstrates the use- 
fulness of such an approach for generating a hierarchy of mean field 
approximations for the DDS. We limited the scope of our numerical study 
to the pair level of MF approximation for the ferromagnetic DDS on the 
square lattice. However, the accuracy of this method can be systematically 
improved by going to larger cluster approximations. Using the coherent 
anomaly method due to Suzuki, (34'35) scaling between MF results from 
different levels of approximation can provide accurate information about 
critical behavior and serve as a basis for an alternative RG approach to 
DDS. Furthermore, relaxation of the lattice translational invariance 
assumption may adapt the MF approximation suggested here for studying 
wetting and interracial phenomena in DDS. 

In this work we have concentrated on the application of the maximum 
entropy mean field method to the DDS. This is a particularly simple 
system, for which many simulation results are available. Thus, it provides 
a useful test of the basic principles behind the MEMF method. However, 
we believe that this approach is quite general, and can be extended to other 
systems for which the equation of motion is known, in stochastic, 
hydrodynamic, or possibly even deterministic forms. 

A P P E N D I X  
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